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Abstract 
The maximum-entropy (ME) method coupled with 
likelihood evaluation is used to solve crystal structures 
ab initio from powder diffraction data. The conven- 
tional ME approach is extended to include the 
estimation of individual reflection intensities that are 
overlapped as well as their phases. A method based on 
Duncan's extension of t and F tests is used in which 
protection against overestimating the associated signifi- 
cance levels is provided for situations where multiple t 
tests are performed and where misleading estimates of 
significance would normally result. When the likelihood 
estimates prove sensitive to the partitioning of inten- 
sities, considerable accuracy in deconvoluting them is 
possible and the final electron-density maps are of high 
quality even from data collected using laboratory 
sources. 

1. Introduction 

Solving crystal structures ab initio from powder 
diffraction data is difficult because of the familiar 
problem in which the three-dimensional diffraction 
pattern is collapsed into one dimension, thus giving rise 
to peak overlap in the data set. The overlap problem 
serves to limit the applicability of powder diffraction as 
a routine tool for determining and refining crystal 
structures from powders. The synchrotron has made a 
profound difference in many cases but the intrinsic 
overlap arising from line broadening and the existence 
of exact peak overlap in high-symmetry space groups 
still impose very severe limitations on what problems 
can and cannot be addressed. Recent methodologies 
that have been proposed to approach this problem 
include a Bayesian formalism to deconvolute the 
overlapped data (Sivia & David, 1994); the fast iterative 
Patterson squaring (FIPS) method of Estermann et al. 
(Estermann et al., 1992; Estermann & Gramlich, 1993); 
the use of annealing methods coupled with model fitting 
by Andreev et al. (1996); an extension to this idea using 
genetic algorithms as an optimization method (Shank- 
land et al., 1997); model building using Monte,Carlo 
methods coupled with fitting the full diffraction profile 
by Tremayne et al. (1997) and, finally, the use of 
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maximum entropy and anomalous scattering by Burger 
et al. (1997). There is a good review of the current status 
of powder diffraction as a tool for solving and refining 
structures by Harris & Tremayne (1996), a general 
review of maximum-entropy methods of solving crystal 
structures by Gilmore (1996) and surveys of the ME 
method in this context by Shankland (1994) and 
Gilmore (1993), all of which will prove useful in the 
context of this paper. 

Despite these undoubtedly important advances, the 
overlap problem is not, in general, solved and we 
present here a method based on entropy maximization 
coupled with likelihood evaluation to determine not 
only the phases of reflections under a given overlap but 
also their relative intensities. It is an extension of the 
original theory of Bricogne (1991) as applied to 
powders (Gilmore et al., 1991; Shankland et al., 1993), 
which has proved successful with both organic and 
inorganic materials. (See, for example, Tremayne, 
Lightfoot, Glidewell et al., 1992; Tremayne, Lightfoot, 
Harris et al., 1992.) The method has some superficial 
similarities with procedures used in SIRPOW92 where 
amplitude partition is also employed (Altomare et al., 
1994) but we use likelihood estimates as a figure of 
merit and analyse the results in a different way. 

2. The overlap problem defined in terms of hyperphases 
and pseudophases 

Let a given overlap set contain ma acentric and mc 
centric reflections. The net intensity, I, is 

m a m 

I = Y~Pi(A 2 + B 2) + Y~ pjC 2, (1) 
i=1 j=ma+l 

where pj is the multiplicity of reflection j, A and B are 
the real and imaginary parts of an acentric structure 
factor and C is the structure-factor component for 
centric reflections. Multiplicities are readily derived 
from point-group symmetry so that the problem we face 
with an overlap is the determination of the A, B and C 
coefficients in equation (1). It is profitable to rephrase 
this problem in terms of hyperphases. Following 
Bricogne (1991), we define the overlap as a vector F in 
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an n-dimensional space R n as 

p11/2 A 1 

pll/2 B 1 

p~/2A 2 

pl/2D 
2 D2 

F = , (2) 
1/2 

Pm~ Area 
1/2 

Pm~ Bm~ 
pl/2 ,,~ 

ma+l l'raa+l 

1/2 - p m C m _  

where n = 2m a + m  c is the number of degrees of 
freedom, and m = m a + mc is the number of moduli 
under the overlap. F can be visualized as a hypersphere 
in ~n and we wish to parameterize it to resolve the 
overlap intensities. Bricogne (1991) provides the tools 
for doing this using an extension of earlier ideas from 
Stubbs & Diamond (1975) and Holmes et al. (1975). A 
total of m - 1 splitting angles, 1/fj,j=l,m_l, 0 ~< ~)" ~_< zr/2, 
are defined called pseudophases, which define a point 
on the positive unit hypersphere. As an example, 
consider an overlap of net intensity 11/2 comprising two 
acentric and one centric reflections. The radius of the 
hypersphere is R = [IF [1 = 11/2. Define R1, R2 and R3 as 
the individual intensities of these reflections, then 

R' = R sin ap, 

R 1 = R' cos ~2, 

R 2 = R' sin ~2 

R 3 = R COS lpl.  

0 _% 1//" 1 _<~ zr/2 

0 _< ~2 -< Jr/2 
(3) 

The angles 1/t 1 and lP2 are the two pseudophases; once 
they are known, the individual intensities of the 
reflections are readily determined and now it is only 
necessary to derive the conventional acentric and 
centric phases to fully characterize the overlap. This is 
the process of determining hyperphases. The phasing 
process is now defined exclusively in terms of angles. 

Alternatively, a binary tree can be constructed to 
express this procedure (Bricogne, 1991): 

n(vl) -b n(vr) = n(v) 

R(vl) = R(v) cos ~(v) (4) 

R(vr) = R(v) sin lp(v). 

Here, R(v) is the radius of the hypersphere at level v, 
R(vl) and R(vr) the radius of the sphere for left and 
right side branches and n the dimension of the sphere. 
Among the n - 1 hyperphases ap, m - 1 are the split- 
ting angles or pseudophases and the radius of F 

is partitioned among m reflections by them. The 
remaining m,, hyperphases are the conventional phases 
for the m~ acentric reflections. 

3. Duncan's  procedure for multiple significance tests 

In order to determine the necessary pseudophases, we 
are going to carry out a sequence of multiple t tests to 
decide on which ratios of intensities lying under an 
overlap are the most likely in a statistical sense. 
However, a blind application of such methods leads to a 
serious overestimate of the associated level of signifi- 
cance and hence introduces damaging systematic errors, 
so we need a procedure to protect us from this. 

Consider an overlap in which there are three reflec- 
tions of intensity 11, I 2 and 13, respectively, which we 
wish to determine. To do this, various partitions of the 
net intensity are tried, and each one has associated with 
it some figure of merit (in this case the log-likelihood 
gain, LLG) and a measure of its variance. We can carry 
out t tests on various combinations of LLGs and their 
associated standard deviations. There will be (Duncan, 
1955): 

(i) 3! = 6 decisions of the form LLG1 is significantly 
less than LLG2, LLG2 is significantly less than LLG3 etc. 
In the usual shorthand, we write these six choices as 
(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1). 

(ii) 2 x 3 ! / 2  = 6 decisions of the form LLG1 is 
significantly less than LLG2 and LLG3 but LLG2 and 
LLG3 are not significantly different from each other. 
This is written (1,2,3), and the other possible choices are 
(2,1,3), and (3,1,2) with an obvious extension to rank- 
ings of the type (1,3,2), (1,2,3) and (2,3,1). The latter, 
for example, signifying that LLG2 and LLG3 do not 
differ significantly from each other but are significantly 
less than LLG1. 

(3) 1 x3! = 6 decisions of the form LLG1 is signifi- 
cantly less than LLG3 but LLG1 and LLG2 do not differ 
significantly and LLG2 and LLG3 do not differ signifi- 
cantly either. This is written as (1,2,3). The remaining 
decisions are written (1,3,2), (2,1,-3), (2,3,1), (3,1,2) 
and (3,2,1). 

(iv) l x 3 ! / 3 !  = 1 decisions of the form (1,2,3), i.e. 
there are no significant differences among the inten- 
sities. 
This is a total of 19 possible tests and, whereas it is 
computationally trivial, a situation arises that if several t 
tests are performed at, say, a 5% significance level, the 
probability that one of these gives an erroneous indi- 
cation is greater than 0.05. (See, for example, Cochran 
& Cox, 1957, pp. 75-76; Duncan, 1955). If the t tests are 
independent, this probability of error is surprisingly 
large: 0.23 for 5 tests, 0.40 for 10 tests and 0.64 for 20 
tests. It is clearly important to protect against this 
source of error and Duncan (1955) has provided such a 
procedure in which the t-test tables in the form of 
studentized ranges (Pearson & Hartley, 1966, Table 29) 
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are modified to include variable protection levels that 
are adjusted against incorrect indications of signifi- 
cance. This is the procedure used here. 

The LLGs are ranked in order and an initial analysis 
of variance carried out. A standard error of the mean 
LLG, Serror, is computed along with the number of 
degrees of freedom, n. Duncan's tables are then used: 
the number of degrees of freedom and the significance 
level define the necessary entries. A studentized range 
statistic is computed: 

qr = (Ti - T j ) / ( n a e r r o r )  1/2, (5) 

where Ti and Tj are two means to be compared. A 
critical value for each degree of freedom and the range 
r can be found from the tables prepared by Duncan. 
The hypothesis of equality of the two means will be 
rejected if qr is greater than the specified level. These 
are the significant s tudent i zed  ranges. Each of these is 
multiplied by the standard error to form what Duncan 
calls the shortest  significant ranges. We now test each 
difference in the order: largest minus smallest, largest 
minus second smallest . . . . .  second minus smallest, 
second minus second smallest . . . . .  finishing with second 
smallest minus smallest. Each difference is significant 
only if it exceeds the corresponding shortest signifi- 
cance range. There is an exception to this rule: no 
difference is significant if the two LLGs concerned are 
both contained in a subset (which can be the complete 
set) of the mean LLGs which has a non-significant 
range. 

We will now use this procedure in an ME-likelihood 
environment. 

4. The determination of pseudophases using the 
maximum-entropy-likelihood method and Duncan's 

procedure 

The method we have evolved is an extension of the 
ideas we have used to study problems in single-crystal 
and powder phasing (Bricogne & Gilmore, 1990; 
Gilmore et al., 1990, 1991, 1993) and works as follows: 

(i) The data are normalized using the M I T H R I L  
program (Gilmore, 1984, 1988) to give unitary structure 
factors [Unl °bs. The overlapped reflections are included. 

(ii) An origin is defined in the conventional manner 
using non-overlapped reflections. If this is not possible, 
origin definition can be left incomplete or overlaps can 
be used but this procedure was not necessary for the 
structures described here. The enantiomorph is also 
defined if both necessary and feasible at this stage. 
These phased basis-set reflections comprise the root 
node of a maximum-entropy-likelihood phasing tree 
(which should not be confused with the tree described 
in §2 for parameterizing overlaps) and subjected to 
constrained entropy maximization in which both the 

amplitudes and phases act as the constraints (Bricogne, 
1984; Bricogne & Gilmore, 1990; Gilmore et al., 1990). 

(iii) A set of reflections, both overlapped and non- 
overlapped, is selected via the algorithm of optimum 
second-neighbourhood extension (Gilmore et al., 1990; 
Bricogne, 1993, 1997a). This works in the same way as 
single-crystal data sets except that, for overlaps, all the 
reflections in a given set must be considered simulta- 
neously and if one reflection is selected from an overlap 
set for the basis set then all the reflections under the 
same overlap are included. Pseudophases arising from 
overlapped intensities are constrained to lie between 0 
and rr/2 in steps of rr/10 (18°), i.e. working as 18, 36, 54 
and 72 ° . This seems to give the finest grid to which this 
formalism is sensitive. 0 and 90 ° were not used since 
these correspond to a situation where one intensity is 
zero and this introduces computational difficulties as 
well as being unlikely when the overlap is large. There 
are possibly better ways of doing this using spherical 
error-correcting codes as a source of experimental 
design (Bricogne, 1991, 1993, 1997b; MacWilliams & 
Sloane, 1977), but we intend to test these at a later time. 
Conventional phases are permuted in the usual way. 
Each choice of conventional and pseudophase defines a 
node on the second level of the phasing tree and each 
node is subjected to constrained entropy maximization. 
At convergence, each node has associated with it a log- 
likelihood gain (LLG) computed using the generalized 
form of likelihood when powder overlaps are present. It 
is these LLGs that are used in tests of significance. This 
formalism is fully described by Bricogne (1991) and 
Gilmore et al. (1991) but it may be useful to summarize 
the relevant mathematics here. 

Let a given overlap comprise Ri. i=l .  m observed 
intensities, and rc i=1, m the calculated intensities 
produced as a result of extrapolation from a maximum- 
entropy optimization. (A single non-overlapped reflec- 
tion is treated in a similar way by putting m = 1.) For 
each overlap or single reflection, define 

R = ~-~piR~ (6) 
i=1  

and 

r =  ~ , P i ~ .  (7) 
i=1  

Let 

z -- R r / E ,  (8) 

where E is a refinable parameter  related to the unit-cell 
contents via E ~" 1 /N ,  where there are N non-H atoms, 
assumed equal, in the unit cell. Define 

X,,(Z) = e x p ( - z ) 0 F l ( - ;  n/2;  z2/4), (9) 

where oF1 is a confluent hypergeometric function. The 
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log likelihood, LH, is written 

LH ----- ~ [ - n / 2  log E - (R - r)2/2E 
al l  e x t r a p o l a t e s  

+ log X.(z)]. (10) 

least part of the structure, which can then be completed 
by conventional Fourier and refinement techniques. If it 
is not, then another cycle of tree building and entropy 
maximization can be carried out from step (iii). 

For the null hypothesis, LH0, we set r = 0 and hence 
z = 0 so that 

LH0 = E [ -n /21og  Z - R2/2Z]. (11) 
al l  e x t r a p o l a t e s  

The log-likelihood gain (LLG) is then 

LLG = LH - LH 0. (12) 

Clearly, the higher the value of LLG the more closely 
the process of entropy maximization has predicted the 
pattern of observed intensities and the more likely it is 
that our phase choices are correct. 

(iv) The likelihood estimates are analysed. When 
pseudophase permutation is involved, the LLG analysis 
is divided into two stages: pseudophases and conven- 
tional phases. Since a four-point sampling method is 
used for the splitting angles instead of the coarse binary 
sampling for conventional phases, an F test is first 
invoked to test if pseudophase permutations have a 
statistical effect on the LLG at a given significance 
level. When significant differences do exist, the LLG 
means for all permuted pseudophase values are 
compared using Duncan's procedure at either the 1 or 
the 5% level. 

(v) If no significant differences are found, then the 
LLGs are not sensitive to the relevant pseudophases. If 
this is the case, then the overlaps can be deconvoluted 
by multiplicity-weighted equipartitioning (pseudophase 
- n'/4). This is surprisingly frequent and may possibly 
arise from our use of likelihood in its simplest diagonal 
approximation (Bricogne & Gilmore, 1990). Other, 
more sophisticated, likelihood formalisms (Bricogne, 
1993, 1997a) may prove more sensitive but these have 
not yet been studied by us. 

(vi) If the significance test indicates suitable 
pseudophases, then the conventional phase angles are 
extracted by the Student t test (Shankland et al., 1993; 
Gilmore et al., 1997). 

(vii) Those nodes that pass (vi) and have the highest 
LLGs are used to compute Sim-weighted centroid maps 
(Bricogne & Gilmore, 1990; Bricogne, 1991; Gilmore et 
aL, 1991) in which the overlapped reflections are 
included. The map coefficients use the observed U 
magnitudes, phase angles resulting from the ME 
extrapolation process and Sim-type weights wi (Sim, 
1959) computed via 

R20Fl(-;  n/2  + 1; z2/4) 
(13) 

Wi = n E o F l ( - ;  n/2; z2/4) 

For small molecules, this is usually sufficient to reveal at 

5. Applying pseudophase permutation to the structure 
determination of TTPD, C2S402 

A powder diffraction data set from TI'PD (1,3,4,6- 
tetrathiapentalene-2,5-dione) was selected to test the 
pseudophase permutation approach. It crystallizes in 
space group P21/a with a = 8.3049, b = 10.8945, c = 
3.9366 A,/3 = 104 ~, with two C, two S and one O atoms 
in each asymmetric unit. Since it is severely overlapped 
(110 out of 176 reflections) and most of the reflections 
with l = +1 are in the overlap sets, in order to get access 
to these reflections, pseudophases have to be used 
(Lightfoot et al., 1993). In fact, this structure has already 
been solved using the ME method by permuting the 
phases of equipartitioned overlap reflections. The 
intensity data come from a laboratory source. 

A three-level phasing tree was generated. All the 
reflections that were permuted at each level of the 
phasing tree and their calculated and true phases are 
listed in Table 1. For the first level, the origin was 
defined with three linearly independent reflections in 
the conventional way. In the second level, four non- 
overlapped reflections and a single overlap set 

- 

containing two reflections (211 and 311) were permuted 
generating a total of 2 6 × 4 = 256 nodes. 

After entropy maximization, all the 256 nodes were 
analysed for magnitude partition (Table 2). The null 
hypothesis of magnitude partition having no significant 
effect on LLG was rejected by an F test. At the 1% 
significant level, application of Duncan's procedure 
indicated that all the LLG means for the four pseudo- 
phase values were significantly different and selected 
a value of 18 ° for the pseudophase. The calculated 
pseudophase for this overlap set is 25 °. The 64 nodes 
using this pseudophase for the overlap set were passed 
for conventional phase analysis using the Student t 
test. Node 38 with the highest LLG exhibited a good 
corresponding centroid map. The phases calculated 
from the structure are also listed in Table 1; it can be 
seen that all the phases of the six permuted reflections 
were correct for node 38. 

A third phasing level was then constructed using 
node 38 as the parent. Five non-overlapped and one 
overlapped set of reflections were permuted and 128 
nodes created for each of the four possible pseudophase 
values. From the pseudophase analysis of all the 512 
nodes thus generated (Table 3), the magnitude partition 
showed a significant effect on the LLG at the 1% 
confidence level. Duncan's analysis showed that all the 
four permuted pseudophase values were different from 
each other; they were sorted by LLG means and that of 
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Table  1. Permuted reflections and their calculated phases for TTPD 

Node 38 is the likelihood preferred node for level 2 of the phasing tree; node 76 is the preferred node for level 3 and node 171 has been chosen 
as an example of what happens to phase predictions when an incorrect pseudophase is selected. All phase angles are in degrees. 

Predicted Predicted Predicted 
Pseudophase True pseudo- Predicted phases: phases: phases: 

h k l choices phase pseudophase True phase node 38 node 76 node 171 

Origin 

2nd level 

3rd level 

2 0 --1 
1 4 --2 
2 7 0 

6 0 -1 
6 0 0 
3 2 0 
1 4 0 

Overlap 
2 1 1 
3 1 -1  

6 2 -1 
5 1 0 
5 3 1 
4 1 0 
0 0 3 

Overlap 
0 1 1 
1 1 -1  

18/36/54/72 25 18 

18/36/54/72 80 72 

180 
180 
360 
180 

180 
360 

180 
360 
180 
360 
180 

180 
180 

180 
180 
360 
180 

180 
360 

180 
180 
360 
180 

180 
360 

180 
360 
180 
360 
180 

180 
180 

180 
180 
360 
180 

180 
360 

360 
180 
180 
360 
180 

360 
360 

Table  2. Pseudophase analysis for TTPD at level 2 of the phasing tree 

All tests are carried out at the 1% significance level. For a definition of q,, see equation (5). 

F test Sum of squares for pseudophase choices 2.14 Degrees of freedom 
Sum of squares for error 0.98 Degrees of freedom 
F ratio 138.00 
Probability that all hyperphases are same 0.0 

3 
189 

Means compared Pseudophase 72 54 36 18 
LLG means 0.2861 0.3781 0.4716 0.5259 
qr 
72 - 10.234 20.624 26.670 
54 - - 10.390 16.436 
36 - - - 6.046 
18 . . . .  

r 2 3 4 
Critical value at 1% significance level 3.70 3.85 3.97 
No. of degrees of freedom: 189 

72 ° had  the  h ighes t  m e a n  LLG.  This was cons i s t en t  with 
the  ca l cu la t ed  va lue  of  80 °. The  L L G s  of  the  128 n o d e s  

hav ing  a p s e u d o p h a s e  of  72 ° w e r e  a n a l y s e d  for  

c o n v e n t i o n a l  phases.  N o d e  76 was the  p r e f e r r e d  n o d e  

and  the  c o r r e s p o n d i n g  c e n t r o i d  m a p  co r r ec t ly  l oca t ed  

all the  n o n - H  atoms.  C o m p a r i s o n  with the  ca l cu la t ed  

phases  s h o w e d  tha t  all the  p e r m u t e d  ref lec t ions  in this 

level  h a d  b e e n  co r rec t ly  p h a s e d  (see Table  3). Fig. 1 

shows the  L L G  p r e f e r r e d  c e n t r o i d  map.  

For  c o m p a r i s o n ,  a n o t h e r  128 n o d e s  with a p s e u d o -  

phase  of  36 °, c o r r e s p o n d i n g  to the  lowest  m e a n  LLG,  

w e r e  also ana ly sed  and  fou r  d i f f e r en t  n o d e s  se lec ted ;  

n o n e  of  t h e m  h a d  an i n t e r p r e t a b l e  c e n t r o i d  map.  Two 

ou t  of  five w e r e  n o n - o v e r l a p p e d  and  all the  ove r l ap  
ref lec t ions  w e r e  w r o n g l y  phased .  

6. O t h e r  tests  o f  the  m e t h o d  

6.1. SAPO-40 

S A P O - 4 0  [(Si, AI, P)640128 • 4 T P A O H ]  is a l a rge -po re  
m o l e c u l a r  sieve. Its s t ruc tu re  has b e e n  r e p o r t e d  by 

D u m o n t  et al. (1993) and  M c C u s k e r  & B a e r l o c h e r  

(1995). The  da t a  c o m e  f r o m  a s y n c h r o t r o n  source  and  

are  82% ove r l apped .  We used  the  space  g roup  Pmmn 
with cell p a r a m e t e r s  a = 21.9410, b = 13.6912, c = 
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Table 3. Pseudophase analysis for TTPD at level 3 of  the phasing tree 

All tests are carried out at the 1% significance level. 

F test Sum of square for pseudophases 1018.68 Degrees of freedom 
Sum of squares for error 1080.37 Degrees of freedom 
F ratio 119.75 
Probability that all hyperphases are same 0.0 

3 
381 

Means compared Pseudophase 36 18 54 72 
LLGmeans -0.1118 1.1712 2.8595 3.4717 
q, 
36 - 8.620 19.963 24.076 
18 - - 11.343 15.456 
54 - - - 4.113 
72 . . . .  

r 2 3 4 
Critical value at 1% significance level 3.69 3.84 3.95 
No. of degrees of freedom: 381 

7.1244,~. As McCusker  & Baer locher  (1995) have 
shown, this is acceptable until a tom-type designation is 
imposed for P and AI; this causes a doubling of the c 
axis and the space group becomes Pccn. However ,  for a 
starting point for Rietveld refinement,  the smaller cell is 
sufficient. 

In general,  we found that, unlike TTPD, the LLGs 
were not  sensitive to overlap partit ion but some phasing 

Fig. 1. The centroid map in projection down the c axis for node 76 for 
TTPD. Atoms labelled 1 and 2 are S, 3 is O and the remainder are 
C atoms. All atoms are labelled with crosses: coordinates come 
from the refined crystal structure. 

sequences were successful in this regard and the 
following is typical: 

(i) An  origin was defined in the usual way generat ing 
the root node. 

(ii) Eight non-over lapped reflections were given 
pe rmuted  phases generat ing a 256 node  second level. 
(The space group is centrosymmetric.)  The correct 
node,  i.e. the one with zero phase error, was selected at 
this point. This node  was in the top eight as ranked by 
LLG analysis and we could have genera ted  a more  
complex tree here using all these eight nodes  as parents 
for a third level, which indeed one would do if working 
on an unsolved structure. However ,  since we are 
interested in establishing the feasibility of magni tude 
partit ion here, and to contain an otherwise very long 
calculation and for purposes of clarity, only the correct 
node  was used as the parent  for the next level. 

(iii) 14 reflections were given permuted  phases and 
the strongest overlap involving the 240 and 601 reflec- 
tions was given true and pseudophase  permutat ion.  
Since this would generate  216 × 4 = 65 536 nodes in a 
full factorial design, a Nords t rom-Rob inson  code was 
used as a source of phase permutat ion (Bricogne, 1993, 
1997a; Gilmore & Bricogne, 1997). This procedure  will 
be discussed in detail e lsewhere (Gilmore et al., 1998). 
The use of the Nords t rom-Rob inson  code plus pseu- 
dophase permutat ion genera ted  1024 nodes. 

(iv) The Duncan procedure  operat ing at a 5% 
confidence level indicated a pseudophase  angle of 72'~; a 
value of 54 ° was not  significantly different al though it 
had a lower average LLG. The mean of these indica- 
tions is 63 ° . The true value established from the refined 
structure is 61°. This is an excellent  agreement .  Analysis 
at the 1% level instead of 5% indicated no significant 
differences. The best map shown in project ion down the 
z axis with the atomic coordinates indicated as crosses is 
shown in Fig. 2. Its quality is high with most of the 
density in correct places and the pore clearly visible. 
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Smaller phasing trees than this were unsuccessful in 
predicting correct pseudophases. 

6.2. Formylurea, C2H4N202 

Formylurea is the first equal-atom organic structure 
to be solved from powder  diffraction data (Lightfoot et 
al., 1992). It crystallizes in the noncent rosymmetr ic  
space group Pn21a with cell parameters  a = 16.817, b = 
6.062, c = 3.669 A and Z = 4. It is more difficult in some 
respects than the previous examples even though the 
structure is very small. A three-level tree was 
constructed as follows: 

(i) An origin was defined in the usual way generat ing 
the root node. The enan t iomorph  was left undefined. 
The following procedure defines it de facto. 

(ii) Four acentric reflections were given permuted 
phases generat ing a 256 node second level. No pseu- 
dophase permuta t ion  was employed at this stage. A 
node with a U-weighted mean phase error of 24 ° was in 
the top 8 as ranked by LLG analysis and was selected at 
this point.  As in the case of SAPO-40, we could have 
genera ted  a more  complex tree here using all the eight 
LLG preferred nodes as parents for a third level but for 
the same reasons only the correct node was used as the 
parent  for level 3 of the tree. 

(iii) One acentric reflection was given permuted 
phases and an overlap involving the 541, 10,3,0 and 432 
acentric reflections was given true and pseudophase 

F R O M  P O W D E R  D I F F R A C T I O N  DATA 

permutat ion.  This generated 4 4 × 4 = 1024 nodes, all of 
which were subjected to ent ropy maximization. 

(iv) The Duncan procedure operat ing at a 5% 
confidence level indicated pseudophase angles of 72 
and 18 ° for the two angles. The true values are 79 and 
13 °, respectively. This is a very encouraging result 
indeed. 

6.3. KAIP20 7 

The powder data for this structure were extracted 
from the JCPDS database (McMurdie et al., 1986). The 
crystal structure was originally solved from single- 
crystal data (Ng & Calvo, 1973). There are 84 unique 
non-over lapped reflections and 53 sets of overlaps 
totall ing 133 reflections. The spoace group is P21/a with 
a = 8.046, b = 9.657, c = 7.331 A and/3  = 106.93°; there 
are one K, one A1, two P and seven O atoms in the 
asymmetric unit. This structure was originally used as a 
test of the maximum-ent ropy method  in powder  
diffraction (Gilmore et al., 1991). A three-level phasing 
tree was constructed as follows: 

(i) An origin was defined using three reflections to 
generate  the root node. 

(ii) Eight  reflections (the space group is centrosym- 
metric) were given permuted phases generating a 256 
node second level. A node with a U-weighted mean 
phase error of 0 ° was in the top eight as ranked by LLG 
analysis and was selected, by the same arguments as 
used above, for generat ing level 3 of the tree. 

0 

Fig. 2. The centroid map for the best node for SAPO-40 projected down the c axis. The pore is clearly visible. The crosses numbered 15-21 are 
the TPA* (tetrapropylammonium hydroxide) ions in the 12-ring channel. 
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(iii) Five reflections were given permuted phases, and 
an overlap involving the 402 and 522 reflections was 
given true and pseudophase permutat ion.  This gener- 
ated 128 nodes, which were subjected to ent ropy 
maximization. 

(iv) The Duncan  procedure  operat ing at a 5% 
confidence level indicated pseudophase angles of ei ther  
54 or 72 ° . The mean of these indications is 63 ° . The true 
value established from the refined structure is 49 ° . This 
is a good agreement.  The best centroid map shown in 
project ion down the z axis with the atomic coordinates  
indicated as crosses is shown in Fig. 3. The positions of 
all but one O atom are correctly indicated. 

7. Summary and conclusions 

The use of phasing trees, ent ropy maximization and 
l ikel ihood evaluat ion is able to predict correctly the 
amplitudes of reflections in powder  overlaps when 
Duncan ' s  method  of multiple significance testing is 
used. The accuracy with which this can be carried out is 
sometimes quite remarkable.  Since we are only using 
the simplest of l ikel ihood functions in which a Rice 
distribution is employed in an equal-variance diagonal 
form, the method is probably capable of further  
ref inement  by using more elaborate  l ikelihood func- 
tions (Bricogne, 1991, 1997a). A current  difficulty is that  

the LLGs are frequently not  sensitive to the exact 
part i t ioning of the overlap intensities but more 
sophisticated l ikel ihood functions may address this 
problem also. In its current  form, the Duncan proce- 
dure is routinely available as a command in the latest 
version of the M I C E  computer  program and it is now 
routine within this software to include and analyse 
overlap parti t ions in the calculations. There  is a 
computat ional  problem, however, in that large phasing 
trees are a necessary consequence of pseudophase 
permuta t ion  and there is an addit ional  difficulty that  
with such complexity it can become harder  to recognize 
the true solution(s). The former problem is becoming 
less important .  On our local network of 15 processors 
on a Unix subnet, it is a simple mat ter  to explore over 
10 000 nodes in 24 h and the problem of finding the 
correct solution can be surmounted  by an automatic  
recycling scheme within a maximum-ent ropy environ- 
ment. This has yet to be fully programmed but it does 
seem that  there is now an addit ional  formalism avail- 
able to process over lapped data when solving structures 
from powder  diffraction data. 

We thank Lynne McCusker and Christian Baerlocher  
for the SAPO-40 data, Phil Lightfoot,  Maryjane 
Tremayne and Peter  Bruce for the remaining data sets 
used here, and the EPSRC for financial support. 

Fig. 3. A centroid map slice at around z = 0.27 for the LLG preferred 
node for KA1P207. The cross labelled 1 is a K ÷ ion, 4 is a P atom 
and the remainder are O atoms. 
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